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I. Curvature in Rate-Equilibrium Relationships 

Rate-equilibrium relationships have been of interest ever 
since Br^nsted,' Bell,2 and Evans and Polanyi3 suggested 
empirical relationships between the activation energy and the 
thermodynamics of an overall reaction: 

AC* = a'AG0 + /3' 

A £ a * = a" AH" + /3" 

The parameter a' provided a measure of the relative sensi­
tivities of AC* and AG0 to substituent effects and was fre­
quently interpreted as an indicator of the structural similarity 
between the transition state and the reactants or products of 
the reaction.4 For many years it was thought that endergonic 
reactions should show a larger dependence on AG0 than ex-
ergonic reactions, so that reactions with negative values of AG0 

should be associated with lower values of a ' than reactions with 
positive AG°'s. This effect should give rise to curvature in plots 
of log k vs. AC 0 , but for almost 40 years no one was able to 
demonstrate unambiguously the anticipated dependence of 
a' on AG0 until Eigen5a produced curved rate-equilibrium 
plots involving proton transfer between bases and acids con­
taining O, N, and C. 

Eigen5a and Ahrens and Maass6 also showed that the cur­
vature was significantly more pronounced for reaction series 
which had larger rate constants at AG0 = O, so that proton 
transfers between O and N gave sharply curved Br^nsted plots, 
while proton transfer reactions involving carbon gave almost 
linear plots over extended regions of ApA-.5 This led to the idea 
that curvature in rate-equilibrium plots and the rate constant 

(24) P. Bender and J. Farber, J. Am. Chem. Soc, 74, 1450 (1952). 
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for the thermoneutral member of the reaction series were 
qualitatively related. 

Since Eigen's original demonstration of curved rate-equi­
librium relationships, numerous other examples of curvature 
have also appeared. These include proton-transfer reac­
tions,7 l6carbonyl additions,'7-'s nucleophilic attack,'9 radi­
cal-transfer reactions,20 and fluorescence quenching by elec­
tron transfer,2'-22 to cite only a few examples. Observed cur­
vature in rate-equilibrium relationships has been used to help 
choose between mechanistic alternatives'6'19'21-22 and to 
calculate "intrinsic" barriers for related series of re­
ac t ions . 7 ' 5 ' 1 7 1 8 The "intrinsic" barrier is defined as the re­
action barrier at AG0 = 0 and a "related series of reactions" 
is often defined as those reactions sharing a common "intrinsic" 
barrier. These relationships have frequently been expressed 
through Marcus' equation12 

AG* = (AG 0) 2 /16AG 0* + V2AG0 + AG0* (1) 

/dAG*| 

\dAG°)AG0* T,p 

where AG0 is the free energy of reaction for an elementary 
step, AG* is the free energy of activation, and AGo* is the 
"intrinsic" barrier for the reaction. 

Since eq 1 is a parabolic relationship, a plot of AG* vs. AG0 

will show a degree of curvature which depends on the magni­
tude of AGo*.12 Recently, a number of authors7"2' have made 
use of this fact in order to estimate intrinsic barriers for several 
classes of proton transfer and other types of reactions. Many 
of the intrinsic barriers are remarkably small, ranging in most 
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cases from 1 to 5 kcal/mol.7~9 Since the overall rates of the 
reactions are far too slow to be accounted for by such small 
barriers, it is necessary to assign the difference to an unusually 
large barrier for assembling the reactants into a reactive con­
figuration. If valid, this result is of fundamental significance 
and has important implications for many aspects of chemical 
reactivity, both in the gas phase and in solution.1'24'29 

Many workers'-5 have recognized that curvature can also 
arise as a reaction becomes diffusion controlled in either di­
rection. The rate constant of a diffusion-controlled reaction 
is usually independent of its equilibrium constant, so that the 
slope of a rate-equilibrium plot for a diffusion-controlled re­
action is frequently close to zero. The slope for a rate-limiting 
proton-transfer reaction will generally be greater than zero, 
so that the transition from rate-limiting proton transfer to 
rate-limiting diffusion will result in a curved rate-equilibrium 
plot. This type of curvature is important when proton transfer 
becomes competitive or kinetically coupled with diffusion or 
perhaps other steps. Consequently, curvature of this type might 
be described as coupling curvature. Curvature due to the re­
lationship between AG* and AG0 is an intrinsic property of 
a particular step of an overall reaction and may be related to 
the intrinsic barrier of that step (e.g., eq 1). Consequently 
curvature of this type might be described as intrinsic curvature. 
It should be clear that if observed curvature is to be indicative 
of the intrinsic barrier magnitude, then one necessary condition 
is that proton transfer must be rate limiting over the pK range 
for which the rate measurements are made. 

One might raise the question of how proton transfer between 
substituted ammonium ions and diazoacetate could be rate 
limiting over 9-10 pA" units if Kreevoy's suggestion70 regarding 
an intrinsic barrier of only 1.4 kcal/mol is correct. At AC0 = 
0, the rate constant for such a reaction would be on the order 
of 1012 s_ l , and, if proton transfer is to be rate limiting, one 
might expect the rate constants for separation of the products 
or the reacting molecules to equal or exceed this value.24 Ro­
tational relaxation is the fastest process which might con­
ceivably lead to molecular separation or reorientation under 
normal conditions in solution. Experimental measurements 
of rotational relaxation times suggest that it will be unusual 
for 1/rtoexceed 1O12S-1. If this number is taken as an upper 
limit to a rate constant for the separation or reorientation of 
two molecules in solution, then an intrinsic barrier of 1.4 
kcal/mol would permit rate-limiting proton transfer over a 
range no greater than ±'/2 pK unit rather than the 9-10 pK 
units reported by Kreevoy.7c Furthermore, an intrinsic barrier 
of 1.4 kcal/mol would result in the rate constant for the reverse 
reaction approaching KT/h near AC0 = 5.6 kcal/mol24b for 
the proton-transfer step. This prediction should occur for all 
reactions of diazoacetate and ammonium ions whose pKs are 
greater than about 9.0-9.5,31 and Kreevoy7c has provided 
about four examples in the pK region between 9 and 10.7. If 
Kreevoy's estimate of the intrinsic barrier is correct, which 
requires proton transfer to be rate limiting for these four re­
actions, then rate constants for separation of the diazonium 
acetate and the amines should be equal to or larger than KT/h. 
This conclusion would seem to be unrealistic and is unsup­
ported by the available experimental information on relaxation 
events in solution (see section II). 

The fast rate constants (~KT/h) for proton transfer required 
by an intrinsic barrier of 1.4 kcal/mol suggest that at least one 
of two variants of internal return3234 should be important for 
Kreevoy's proton-transfer reactions involving ammonium ion 
pA"s higher than 9.0-9.5. These reactions are particularly 
significant since nearly all of the curvature from the "slow" 
end of his Bryinsted plot comes from these four reactions, and 
it is widely known that internal return can result in a sub­
stantial increase in curvature.24 Internal return can arise after 
the initial proton transfer to diazoacetate if the resulting base 

reabstracts a proton from the diazonium acetate zwitterion 
before separation of the two species into solution can occur.32-33 

If the two protons of the diazonium intermediate become 
equivalent before the occurrence of proton transfer to the base, 
the a hydrogens of the starting diazoacetate can exchange with 
solvent. If the two protons do not become equivalent, then in­
ternal return can still take place, but the simplest available 
method of detection is the indirect technique of Streitwieser 
and Sonnichson32 using the Swain equation. The results of 
experiments for detecting internal return would be interesting, 
but the outcome will not affect the conclusion that Kreevoy's 
intrinsic barrier may be incorrect. If internal return is present, 
the intrinsic barrier can be revised upward,24 and, if internal 
return is absent, it would seem unlikely that the rate constants 
for proton transfer (in the reverse direction at pKa > 9-9.5) 
actually approach KT/h, as required by the intrinsic barrier of 
1.4 kcal/mol. In either case some explanation other than a low 
intrinsic barrier would be necessary to account for all of the 
observed curvature.3^ 

It has generally been assumed that curvature due to a change 
in rate-limiting step could be recognized by applying one or 
more of the widely accepted criteria for a rate-limiting step. 
These include substantial primary, secondary, or solvent iso­
tope effects, Bryinsted slopes between zero and unity, or free-
energy correlations which do not exhibit sharp changes in slope. 
One result of the present paper is a test of the adequacy of these 
criteria by examining the influence of prior or subsequent steps 
on the observed pattern of relative rates and kinetic isotope 
effects. A related question is whether or not this influence of 
additional steps in a multistep mechanism can be distinguished 
from intrinsic variations due to changes in rate constants for 
the rate-limiting step. For reactions in solution, the simplest 
multistep reaction might involve an encounter or diffusion 
step(s) where two or more reacting molecules come together 
in a configuration suitable for reaction, a bond-forming step 
where structural and electronic reorganization take place, and 
finally a product separation step(s). A simple example is Ei-
gen's three-step proposal for proton-transfer reactions-^1 (eq 
2). 

AH + B- ^ r [ A H - - - B ] -
A : - a 

encounter 

^=* [A- --HB]- ^ A - + HB (2) 
A-b A_c 

proton transfer separation 

Under steady-state conditions5 

£obsd = kakbkK/(k-a(k-b + kc) + kbkc) (3) 

K = kakbkc/k-ak-bk-c (4) 

a = d log kb/d log (kb/k-b) 

aexp = d log fcobsd/d log K 

Combining eq 3 and 1 using transition-state theory, an ex­
pression for &obsd in terms of AG°, AGo*, ka, &-a> kc, and &_c 
can be obtained24 that is valid regardless of which step is rate 
limiting. A comparison of kb and A:0bSd reveals the effect of 
coupling between proton transfer and prior or subsequent 
steps.5t> 

It should be emphasized that Kreevoy's suggestion regarding 
the small intrinsic barrier (1.4 kcal) for the diazoacetate re­
actions could be correct even though it would require rate 
constants comparable to KT/h or greater for reversal of the 
encounter step. In principle, this might be possible if encounter 
is accompanied by vibrational distortion of one or both reac­
tants to form a new geometry which is better suited for proton 
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transfer. The encounter could be effectively reversed in the 
time scale of a vibration (~}I/KT S) without requiring reori­
entation or physical separation of the reacting molecules, if 
vibrational relaxation of the distorted geometry leads to a 
sufficiently large drop in energy.64 Since the diazoacetate anion 
is presumably planar, this geometric distortion might include 
a change in hybridization of the 2 carbon from sp2 toward sp3. 
However, there appears to be little evidence that internal dis­
tortions make a significant contribution to encounter in reac­
tions involving delocalized substrates which undergo hybrid­
ization changes.28 Particularly striking are the observations 
that protonation of benzyl anion by methanol is close to a 
diffusion-controlled process {k = 6 X 109 M - 1 s - l)28a and that 
recombination of benzyl cation with I - proceeds with an even 
larger rate constant (k = 5 X 1010M -1 s~').28b Furthermore, 
the numerous examples of internal return in radical reac­
tions,36-38 solvolysis reactions,39 and proton-transfer reac­
tions32-33 provide ample demonstration that rate constants for 
reversal of the encounter step are frequently less than KT/h and 
comparable to rate constants for many chemical reactions. 

These results suggest that for many reactions vibrational 
relaxation may be insignificant as a mechanism for reversal 
of the encounter step and that processes leading to molecular 
reorientation or separation are often necessary. Consequently, 
it would be of interest to examine four fundamental questions 
with regard to the recent observations522 of curvature in 
rate-equilibrium relationships. 

(a) What is the maximum limit and the range expected for 
rate constants for molecular separation in solution (section 
M)? 

(b) How do intrinsic effects and coupling effects restrict 
the range of rate-limiting proton transfer and increase observed 
curvature (section III)? 

(c) Can intrinsic curvature be distinguished from coupling 
curvature by examining patterns of relative rates and kinetic 
isotope effects (section IV)? 

(d) How much curvature can be added by coupling addi­
tional steps to proton transfer (section V)? 

II. How Fast Do Molecules Separate in Solution? 

Since the detailed mechanism(s) of encounter and separa­
tion processes are obscure, the prediction of these rate constants 
on a case-by-case basis is a difficult question at present. For­
tunately, there is extensive information on diffusion and re­
laxation events available in the literature. While this material 
cannot provide any specific numbers directly relevant to spe­
cific reactions, the data are adequate for obtaining an estimate 
of the maximum limit and the range that rate constants for 
separation might reasonably be expected to cover. 

The dielectric relaxation times of small molecules with weak 
interactions such as benzene or CCU are frequently on the 
order of 10-12 s (1/r = 1012 s-1).40 For larger molecules, such 
as hexane40 and didodecyl ether,41 1/r values range from 2.5 
X 10u to 8.4 X 109S-'. 

Molecules showing significant interactions with each other 
or with solvent frequently have reduced values of 1/r. For 
example, chloroform is known to self-associate to a slight de­
gree,42 and 1/T (30 0C) is 1.85 X 10" s-1,43 compared to 
about 1012 s_ l for CCU or benzene. Good electron acceptors 
such as tetracyanoethylene (TCNE) and tetrachlorobenzo-
quinone show a similar effect in donor solvents: 1 /T for TCNE 
(20 0C) is equal to 7.52 X 10'° s_l in mesitylene solvent.44 

Hydrogen bonding might also be expected to reduce 1 /r, which 
for water has been found to range from 7.4 X 10'° (10 0C) to 
2.08 X 10" s"1 (50 0C).45 Similarly, 1/r for methanol46 varies 
from 1.42 X 1010 (5 0C) to 3.62 X 10 l 0s- ' (55 0C). A liquid 
crystal, cholesteryl chloride/cholesteryl myristate (7:4), pro­
vides an example of an exceptionally slow dielectric relaxation 

process: 1/r varies from 4 X 103 (21 0C) to 2 X 107 s_l (57 
0C).47 

Lifetimes of amine-water complexes have been estimated 
using ' H NMR by Grunwald and co-workers, who measured 
dissociation rate constants (20-30 0C) ranging from 5XlO8 

to 8.3 X 1010S- ' for various amines and pyridines.48 Two no­
table exceptions to this range are the dissociation rate constants 
for the hydrogen-bonded complexes between ammonia and 
water (5 X 10" s-1, 25 °Q4 8 a and the corresponding value for 
the complex of tert-butyl alcohol with /V,iV-diethyl-w-tolui-
dine (2.6 X 105 s_l, 25 °C).48c Significantly, the rate constants 
for dissociation show little or no correlation with the basicity 
of the amine, but do seem to depend inversely on the total steric 
bulk of the complex.48d This suggests that strong hydrogen 
bonding is not entirely responsible for some of the slower 
values. 

Rate constants have also been measured by various tech­
niques for dissociation of hydrogen-bonded dimers. Dimers of 
2-pyridone,49 benzoic acid,50'51 and e-caprolactam52 have 
dissociation rate constants varying from 105 to 108 s_ ' in sol­
vents ranging from benzene and cyclohexane to dioxane and 
dimethylformamide. 

The relationship between k—d and kc with 1/r derived from 
dielectric relaxation data may not be particularly simple, since 
processes leading to dipole reorientation in an oscillating 
electric field do not necessarily correspond to those leading to 
reversal of the encounter step. Nonetheless, the dielectric re­
laxation data is in reasonable agreement with the molecular 
rotation relaxation times derived from laser light scattering 
from simple molecules,30 and it is unlikely that either reori­
entation of two molecules or their separation to free reactants 
or products can occur faster than molecular rotation of small, 
symmetrical, weakly interacting molecules such as benzene 
or CCI4. Consequently, we may be reasonably certain that the 
maximum limit for k—A and kc in solution under ordinary 
conditions will be somewhere in the neighborhood of 1012 s_1, 
and that values in the range 10s-1010 s_1 may not be un­
common. 

III. Curvature and the Range of Rate-Limiting Proton 
Transfer. Intrinsic Effects vs. Coupling Effects 

The relationship between log kc and AGo* which determines 
the maximum pK interval over which proton transfer can be 
rate limiting is illustrated in the two contour plots in Figures 
la and lb.53 In Figure la, each point on a contour line corre­
sponds to a value of log kc (left vertical axis) and a value of 
AC0* (lower horizontal axis). AC0* is directly related12-24 to 
the pK interval where a barrier exists for proton transfer in 
both directions (upper horizontal axis). This pA" interval is 
equivalent to the pK span over which both k^ and A:_b will be 
smaller than KT/h, and is the transition region for a (Br^nsted 
slope for proton-transfer step)24 to change from zero to unity. 
Unless kc and k—d equal KT/h, proton transfer will be rate 
limiting only over a fraction of the transition region, and this 
fraction is the value assigned to each contour line. For example, 
if kQ = KT/h, an intrinsic barrier of 15 kcal/mol (lower hori­
zontal axis) would correspond to a transition region for rate-
limiting proton transfer of ±44 pA" units (upper horizontal 
axis). If kc is reduced to 1010s_l (left vertical axis), the contour 
line connecting log kQ and AG0* is the one marked 0.5, so that 
the rate-limiting region is reduced to 0.5 (±44) = ±22 pK 
units. This span of ±22 pK units would be the rate-limiting 
region associated with an intrinsic barrier of only 7.5 kcal/mol 
if it were incorrectly assumed that kc = KT/h. 

In Figure lb, an alternative contour plot is presented. The 
vertical and horizontal axes are identical with those of Figure 
1 a, but the contour lines represent the locus of all values of log 
kQ and AGo* corresponding to a fixed pK interval where proton 
transfer is rate limiting. Note that an interval of rate-limiting 
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Figure 1. (a) Fraction of transition region where proton transfer is rate 
limiting. Each contour line corresponds to the fraction (e.g., 0.5,0.6, etc.) 
and the transition region (O < a < 1) is indicated on the upper vertical axis. 
It can be shown that the contour lines fit the equation log kc = -[(1 - f)(l 
- f)]AGo*/(2.3^r) + log KT/h. (b) Region of ApA" for rate-limiting 
proton transfer. The contour lines trace out the locus of all values of log 
A:c and AGo* which correspond to a given ApA: interval of rate-limiting 
proton transfer. For example, if rate-limiting proton transfer is observed 
over an interval of ±5 pA: units, the intrinsic barrier could range from 1.7 
to 16.6 kcal/mol as kc varies from KT/h to 103 s-1. It can be shown that 
the contour lines fit the equation log kQ = '̂ ApA- + log KT/h -
(2.3/?7"(ApA:)2)/(16AGo*) - (AG0*/2.3«r) where \2.3RTApK\ < 
4 AG0*. Note that for AGo* » ApA:, log kc and AGo* are almost linearly 
dependent. 

proton transfer of ±5 pK units is consistent with an intrinsic 
barrier of ~2 kcal/mol if kc = KT/h, but could just as well 
represent an intrinsic barrier of 10 kcal/mol for kQ = 108 s_l 

(Figure lb). Since the expected range for kc is about 108-1012 

s_1 (section II), this 8 kcal/mol uncertainty for a 104 variation 
in kc is significant, since it could account for a substantial 
portion of the observed7^9 variation in intrinsic barriers be­
tween 2 and 10 kcal/mol.54 

IV. Can Intrinsic Curvature Be Distinguished from Coupling 
Curvature? 

A. Relative Rates. One of the questions of primary impor­
tance is whether the curvature produced by a low intrinsic 

barrier (e.g., 1.4 kcal/mol) can be imitated by a high intrinsic 
barrier (e.g., 12.5 kcal/mol) coupled with a slow step subse­
quent to proton transfer (i.e., kc « KT/h). To test this proposal, 
log /c0bsd was calculated from eq 3 for AG0 between 0 and 10 
kcal/mol. Values for AG0* were selected (1.4-12.5 kcal/mol), 
and kc was chosen so that the Brrfnsted curvature for 0 < AG0 

< 10 kcal/mol matched that calculated from eq 1 with ACo* 
= 1.4 kcal/mol and kc > KT/h. A simple method of comparing 
curvatures is to tabulate the rates (relative to the rate at a 
reference value of AG°) at different AG's for each intrinsic 
barrier. 

Comparison of these relative rates for intrinsic barriers 
between 1.4 and 12.5 kcal/mol shows only marginal differences 
(Table I). The maximum deviation is only 0.14 log unit and 
most of the discrepancies are well within 0.1 log unit. In Figure 
2a, Kreevoy's data7c (log kobsA vs. log A:HA where K^A is the 
ionization constant for the ammonium salt) is plotted, together 
with the line calculated from eq 1 using AG0* = 1.4 kcal/mol, 
kc > KT/h, WT

59 = 13.8 kcal/mol, and pK = +5 when AG0 = 
0. In Figure 2b the same data are plotted, but the line is gen­
erated from eq 3 with AG0* = 12.5 kcal/mol and kc = 4.5 X 
104S - ' . Log /c0bsd is assumed to be identical for the two plots 
at pK = 5.31 This last value is completely arbitrary and any 
reasonable value could be used by readjusting fcc. The results 
in Table I show that any value for the intrinsic barrier between 
1.4 and 12.5 kcal/mol would be consistent with the observed 
curvature, and that values for kc in the range of 108-1012 s - 1 

would permit intrinsic barriers up to 11 kcal/mol. 
B. Isotope Effects. Kreevoy has also measured the primary 

kinetic isotope effect for the same reaction.70 The observation 
that kH/k® declines from M 1 to ~1.4 over a span of ~7 pK 
units was regarded as being consistent with a low (i.e., 1.4 
kcal/mol) intrinsic barrier. However, such a dropoff can also 
be produced by the combination of a high barrier at AG0 = 
0 and a low value of kc. In fact, the same values of kc and AGo* 
that accounted for the curvature of the Bronsted plot will also 
produce essentially the same dropoff of the kinetic isotope ef­
fect (see Figure 3 and Table II). The differences which are seen 
are small compared to the experimental variation in Kreevoy's 
isotope effects7c and become insignificant when log (kH/ 
&D)obsd is considered. The results show that kc and AGo* are 
both important in producing changes in (fcH/kD)obsd with 
variations in AG0. For AG0* = 10 kcal/mol, kh

H/kb
D is 

greater than 11 over a pK range of more than 7 units, while 
(/cH//cD)0bsd varies from 11.0 to 1.06 for the same region. Such 
behavior is simply a reflection of the well-known fact that /c0bsd 
can be influenced by more than one elementary step at a time, 
and that discrete boundaries, with sharp changes in behavior, 
do not necessarily separate those regions where one elementary 
step is dominant over the others. 

Two significant points emerge from this analysis: (1) 
Bronsted curvature and variation of observed isotope effects 
can provide only a lower limit to the intrinsic barrier of a re­
action. (2) The intrinsic curvature and the curvature produced 
by a change in rate-limiting step appear indistinguishable 
unless data of unusually high precision are obtainable. 

V. How Much Coupling Curvature Can Be Added? 
The "Apparent" Intrinsic Barrier 

Since we have seen that a large intrinsic barrier (e.g., 12.5 
kcal/mol) can appear to be only 1.4 kcal/mol, we might expect 
that it could also be reduced to any intermediate height, if k-a 
and kc assume appropriate values. Indeed, this is found to be 
the case as seen in Figure 4, where AGo* has been set equal to 
12.5 kcal/mol and k-a, kc vary from 106 to 1010 s~'. The 
theoretical transition region for a to go from 0 to 1 for AGo* 
= 12.5 kcal/mol is about 73 pK units (25 0C). If we define the 
empirical transition region (ETR) as the pK interval for «cxp 
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Table I. Values" of Log fc*rei Illustrating Curvature* as a Function of kc and AG0 

A G ° -
AG° r e f , 

kcal/mol 

0.00 
2.00 
4.00 
5.60 
6.50 
9.00 

10.00 

curvature* 

Ac, S"1 c 

1.4* 

0.00 
0.86 
1.99 
3.08 
3.74 
5.57 
6.30 

0.018 

»KT/h 

1.65» 

0.00 
0.92 
2.10 
3.18 
3.83 
5.66 
6.39 

0.019 

KT/h 

2.5» 

0.00 
0.92 
2.09 
3.16 
3.79 
5.58 
6.31 

0.018 

IO12 

5.0" 

0.00 
0.90 
2.04 
3.11 
3.74 
5.54 
6.26 

0.018 

1.45 X 1010 

AG0* 
7.5» 

0.00 
0.89 
2.03 
3.10 
3.73 
5.54 
6.27 

0.018 

2.1 X 108 

kcal/mol 
10.0* 

0.00 
0.89 
2.02 
3.09 
3.73 
5.54 
6.27 

0.018 

3.1 X 106 

12.5" 

0.00 
0.89 
2.02 
3.10 
3.73 
5.54 
6.27 

0.018 

4.5 X 104 

10.0" 

0.00 
0.99 
2.13 
3.17 
3.79 
5.56 
6.29 

0.018 

109 

11.0s 

0.00 
0.96 
2.09 
3.13 
3.75 
5.54 
6.26 

0.018 

108 

12.5-/ 

0.00 
0.92 
2.06 
3.11 
3.74 
5.54 
6.27 

0.018 

1.15 X 106 

« Log kx
K\ = log £obsd(AG° ref)/£obSd(AG0) where A:obsd(AG°ref) = A0bsd at AG° r e f and AG0* = x kcal/mol. * AG° r e f = 0.0. <• Value of 

Ac required to give close agreement between log A''4rei and log kx
le\. No attempt has been made to completely optimize the Ac values. d AG°ref 

= 7.625 kcal/mol. e AG°ref = 6.6 kcal/mol. f AG0
ref = 4.0 kcal/mol. * Log A\ e i can be fit to a quadratic function, log kx

n\ = a + by + cy2, 
where y = AG0 - AG°rer. The curvature can be defined as the quadratic coefficient, c. The quadratic coefficient is determined by least squares 
{a is fixed at 0.0 and b is fixed at 0.454). The standard deviation of the fit is 0.05 log unit.. 
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Figure 2. Constant curvature and AGo*. (a) Kreevoy's data, ref 7, plotted 
using best parameters found in ref 7 for eq 1 .-9 AGo* = I -4 kcal/mol; Wr 
= 1 3.8 kcal/mol; A_a, kc > KT/h. (b) Same data plotted according to eq 
3 v\ here AG0* = 12.5 kcal/mol, kc = 4.5 X 104S"1, k-d > KT/h. Intrinsic 
barriers from 1.4 to 1 2.5 kcal/mol can reproduce the curvature over the 
•pK range investigated by Kreevoy. The curvature at the low pK region can 
be increased by reducing A_a. 

to change from 0.01 to 0.99,53'54 then with /fc_a = kc = 101() s~' 
the ETR is about 44 pA" units. This would correspond to an 
"apparent" intrinsic barrier of ~7.5 kcal/mol if it were erro-

9 7 5 3 
p K H A 

Figure 3. Variation of kinetic isotope effects with pA': (•) Kreevoy's ex­
perimental data (ref 7); (A) calculated (kH/kD)0^a using AGo* = 1 -4 
kcal/mol assuming Ac > KT/h; (—) calculated (kH/kD)0bs,d using eq 3 
where AGo* = 12.5 kcal/mol and Ac = 4.5 X IO4 s~'. Intrinsic barriers 
from 1.4 to 12.5 kcal/mol can reproduce the falloff of (AH/AD)0bsd with 
increasing pK. AG°rcf = 0 for AG0*= 1.4 and AG°ref = -1.1 for AG0* 
= 12.5. 

neously assumed that k-d = kc = KT/h (6 X 1 0 l 2 s _ l , 25 0C). 
If k-a = kc = IO8 S - ' , then the apparent intrinsic barrier is 
reduced to 4.8 kcal/mol (ETR = 28 pA" units), while with k-A 

= kc = 106 s _ ' the ETR of 18 pK units would yield an apparent 
intrinsic barrier of a mere 3.1 kcal/mol. 

Comparison of a with acxp (Table III) shows that proton 
transfer is rate limiting over a range of roughly ±11 pAT units 
with k-.d = kQ = 101 0S - 1 . When k-a and kc are reduced to IO6 

s_ 1 , the effective region for rate-limiting proton transfer is 
compressed into a span of ±1 -2 pK units. Br^nsted,1 Bell,2 

Eigen,5a and other pioneer investigators anticipated that aexp 

could be influenced by changes in the rate-limiting step, al-
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Table II. Primary Kinetic Isotope Effect vs. kc and AGo* 

AG0 -
AGc

ref, AG0* , kcal/mol 
kcal/mol 1.65" 2.5* 5.0* 7.5" 10.0" 12,5* 10.0* 11.(V 12.5? 12.5C \A" 

0.00 (kH/kD)obsi = 110 11U I U ILO ILO 1 ^ 0 1 0 2 1 0 5 1 0 9 9^ 9,5 
fcbHAb6= 11.6 12.0 12.0 12.0 12.0 12.0 11.1 11.4 11.8 
kc/k-b

D = 188 130 128 126 125 124 113 123 124 

2.00 ( W W = M i I M M 83 8 3 8 1 ) 8 3 8 4 8 3 | 2 
kb

H/kiP = 10.3 11.3 11.8 11.9 11.9 12.0 10.6 11.0 11.6 
kQ/k-b

D= 40 27 25 24 24 24 29 29 27 

4.00 ( W W = 4JS 43 44 43 43 4 J _ 4 j ) 4 J ) 4 J > 12 53 
^ W = " 7.2 9.3 11.1 11.6 11.7 11.8 10.0 10.6 11.3 
kQ/k-b

D= 11.0 6.8 5.7 5.2 5.0 4.8 7.9 7.5 6.1 

5.6 (frHMD)obsd = 18 17 14 23 12 2J. 3J) 19 15 19 10 
kb

H/kb° = 4.5 7.3 10.3 11.2 11.5 11.7 9.5 10.1 11.0 
kc/k-b

D= 4.8 2.7 1.9 1.6 1.5 1.4 2.9 2.7 2.0 

6.5 (£HMD)0.bSd= 2 J . 2 J . L 2 LZ hi L6. 23 12 L9 10 2A_ 
kb"/kb

D = 3.3 6.2 9.8 10.9 11.3 11.6 9.2 9.9 10.9 
kc/k-b

D= 3.3 1.7 1.1 0.9 0.8 0.7 1.7 1.5 1.1 

9.0 (fcH/frD)obsd = hi hi hi 13 L i hi IA hi hi hi hi 
kb

H/kb° = 1.5 3.4 8.1 9.9 10.7 11.2 8.3 9.1 10.3 
kQ/k-bv= 1.5 0.6 0.2 0.2 0.1 0.1 0.4 0.3 0.2 

IO.O (kH/k%bsd = L i L l M Li Li L i L l L l L i Li L2 
kb

H/kb
D = L 2 2-5 1A 9-5 i a 5 1 L 0 7-9 8 ' 8 1O-1 

kJk-b
D= 1.2 0.4 0.1 Ol 0.1 Ol 0.3 0.2 0.1 

fcc,s-' = KT/h IQ12 1.45 X IQ10 2.1 X IQ8 3.1 X IQ6 4.5X10" IQ9 IQ8 1.15 X IQ6 4.5 X IQ4 »KT/h 

" AG* OD - AG* oH = 1.454 kcal/mol = ZPE, AG°ref = 0. kcal/mol. * ZPE = 1.473 kcal/mol, AG°rsf = 0. c ZPE = 1.353 kcal/mol, AG°ref 
= -1 .1 . d ZPE =1.335 kcal/mol, AG°ref = 0.0. e ZPE = 1.473 kcal/mol, AG°ref = 7.625. / ZPE = 1.473 kcal/mol, AG°ref = 6.6. « ZPE 
= 1.473 kcal/mol, AG°ref= 4.0 
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Figure 4. Influence of coupling on Br̂ nsted slope. Rate constants for proton 
transfer (^b) (Table III) have been calculated using eq 1 with AGo* = 
12.5 kcal/mol. "Observed" rate constants (fcobsd) have been calculated 
using eq 3 where i- a , kc (/c_a = kc) have been successively adjusted from 
1010, 108, and 106S"1. 

though the contributions of intrinsic and coupling effects were 
never quantitatively delineated. The relative importance of 
these contributions to aexp can be seen from eq 5,60 and it is not 
surprising to find that the discrepancy between a and acxp 

caused by a changeover in rate-limiting step can be significant 
only when k-b approaches and exceeds kc. 

«cxP = oi + (1 - a)k-<o/(k-b + /cc) (5) 

However, it is apparent that the coupling contribution to a^p, 

represented by the last term in (5), is not easily determined 
from curvature measurements, since a careful inspection of the 
three lines in Figure 4 shows no well-defined point where the 
rate-limiting step changes from a to b or from b to c. An 
analogous result can be derived for isotope effects,60 and ex­
amination of kh

H/kb
D and (£H/A:D)obSd (Table III) shows that 

the transition from one rate-limiting step to another can occur 
over 8-9 pK units and that (kH//cD)0bsd can maintain a sig­
nificant value over a large portion of this transition region. 

An important point, which is not often appreciated,33 is that 
values of acxp greater than zero or less than unity or substantial 
values for (A:H//cD)0bsd do not necessarily prove that proton 
transfer is rate limiting. 

VI. Conclusions 

The results of the present paper show that it is not always 
possible to distinguish whether variations in kinetic measure­
ments are due to factors intrinsic to the bond-making process 
or to a changeover in the rate-limiting step. An important point 
(Figure 1) is that the rate-limiting region with intrinsic barriers 
as large as 12.5 kcal/mol will be reduced by 30% or more, even 
when kc is as high as 1O12S -1 . For smaller intrinsic barriers 
(e.g., Kreevoy's 1.4 kcal/mol) the transition region of about 
±5 pA- units (kc = KTJh) would be reduced to about ±'/2 pK 
unit with kc= 1012 s_1 . Since KT/h = 6 X 1 0 l 2 s - ' at 25 0 C, 
it is clear that even small departures from KT/h for rate con­
stants such as /c_a and kQ can have rather significant effects 
on the intrinsic barriers calculated assuming that k—d = kc = 
KT/h. Furthermore, a considerable body of experimental evi-
dence30 '40-52 supports the idea that rate constants for separa­
tion will commonly lie in the range of 108— 1012 s _ l , and in 
special instances48 may dip to 105 S - ' or even below. No claim 
has been made in the present paper that these values are di­
rectly related to any specific reaction, but it should be noted 
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Table III. Influence of Subsequent and Prior Steps on Observed Primary Isotope Effects and Changes in Relative Rates" 

-ApK 

14.94 
12.70 
11.21 
9.71 
8.22 
5.98 
4.48 
2.99 
1.49 
0.00 

a 

0.296 
0.327 
0.347 
0.367 
0.388 
0.418 
0.439 
0.459 
0.480 
0.500 

10 1 0 S- ' 

0.213 
0.303 
0.339 
0.364 
0.387 
0.418 
0.439 
0.459 
0.480 
0.500 

^exo 
K— a = KQ 

108S-1 

0.007 
0.037 
0.101 
0.215 
0.325 
0.408 
0.436 
0.459 
0.480 
0.500 

106S"1 

0.000 
0.000 
0.001 
0.005 
0.019 
0.122 
0.282 
0.411 
0.469 
0.500 

(*b H Ab D )* 

8.28 
9.17 
9.73 

10.25 
10.72 
11.30 
11.60 
11.81 
11.94 
11.99 

1010S"1 

6.25 
8.59 
9.53 

10.19 
10.70 
11.29 
11.59 
11.81 
11.94 
11.99 

(*HMD)obsd< 
K —a KQ 

10 8 S- ' 

1.18 
1.94 
3.55 
6.41 
9.14 

11.06 
11.54 
11.80 
11.94 
11.99 

10 6S- ' 

1.00 
1.01 
1.04 
1.13 
1.48 
4.01 
7.82 

10.67 
11.68 
11.89 

" a and aexp calculated as in ref 24. AGo* = 12.5 kcal/mol; £_a = kQ (see columns 3-5 and 7-9). * Calculated from eq 1 with AC* 0D -
AG* oH = 1.473 kcal/mol (25 0C). c Calculated from eq 3. 

that even a range of 104 in kc could account for reductions up 
to 8-12 kcal/mol54 in intrinsic barriers from 10 to 23 kcal/mol 
(Figure la). 

A second point is that, since maximum rate constants for 
separation (i.e., k-a, kc) will be in the neighborhood of 
10"-101 2 s~',30 encounter and/or separation will necessarily 
become rate limiting as the rate constant for the bond form­
ing/breaking process approaches and exceeds 1 0 " - 1 0 l 2 s _ 1 . 
As a result, less and less information concerning the bond-
forming or bond-breaking step becomes available so that the 
technique of examining the asymptotic behavior of a rate-
equilibrium plot as AG0 approaches ±<» is unlikely to prove 
useful for measuring intrinsic barriers or for distinguishing 
alternatives to Marcus' theory (i.e., eq 1). In the limit of large 
I AC 0 1, changes in rate will progressively reflect the change­
over in rate-limiting step rather than intrinsic changes in the 
bond-forming step. 

A third point is that the conclusions of the present paper do 
not depend upon the nature of the processes represented by /c_a 

or &c The results are applicable to situations where a sequence 
of bond reorganizing steps may be involved and where many 
of the rate constants may be orders of magnitude less than 
KT/h. A few examples include base-catalyzed eliminations, 
carbonium ion rearrangements, nucleophilic addition and 
elimination reactions of carbonyl compounds, aromatic sub­
stitution reactions, and various internal rearrangements. 
Photochemical systems, where energy transfer and spin in-
terconversion compete with bond reorganization, should also 
provide some interesting applications. 

The aim of the present paper has been to test the uniqueness 
of the conclusions derived from a particular rate-equilibrium 
treatment61 when applied in a form appropriate to a single 
kinetic step (e.g., eq 1). The results definitively demonstrate 
that distinguishing intrinsic effects on rate measurements from 
coupling effects is exceedingly difficult without knowledge of 
rate constants for so-called "fast" steps prior or subsequent to 
a rate-limiting process. At present, general methods for mea­
suring such rate constants directly have not been devel­
oped,62'63 but it seems clear that such information will play a 
central role in relating theoretical treatments of chemical re­
activity to experimental results obtained in solution and in the 
gas phase. 
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simplifies to eq 5. If kc » k-b, cve*p = ak-J(k-a + kb). Note that eq 5 does 
not depend on Marcus' theory and that the only restriction on a is that a 
exist. The analogous relation between (k*lk°Wsd and k0"/kb

D is given by 
(W(0WSd = CfbH/kbD)Cf-aCf-bD + kc) + k,?k0)/{k-a(k-b» + k0) + 
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rate constants are not obtainable by the normal methods of detecting in­
ternal return.62 The second point is that the discrepancy between a and 
cvexp can be much more significant than that between log kb and log kobsa. 
For example, if k-blk0 = 1, log kband log /cobSd may differ by only 0.3 log 
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